Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential
نویسندگان
چکیده
Human IgG3 displays the strongest effector functions of all IgG subclasses but has a short half-life for unresolved reasons. Here we show that IgG3 binds to IgG-salvage receptor (FcRn), but that FcRn-mediated transport and rescue of IgG3 is inhibited in the presence of IgG1 due to intracellular competition between IgG1 and IgG3. We reveal that this occurs because of a single amino acid difference at position 435, where IgG3 has an arginine instead of the histidine found in all other IgG subclasses. While the presence of R435 in IgG increases binding to FcRn at neutral pH, it decreases binding at acidic pH, affecting the rescue efficiency-but only in the presence of H435-IgG. Importantly, we show that in humans the half-life of the H435-containing IgG3 allotype is comparable to IgG1. H435-IgG3 also gave enhanced protection against a pneumococcal challenge in mice, demonstrating H435-IgG3 to be a candidate for monoclonal antibody therapies.
منابع مشابه
Human IgG3 with extended half-life does not improve Fc-gamma receptor-mediated cancer antibody therapies in mice
BACKGROUND Current anti-cancer therapeutic antibodies that are used in the clinic are predominantly humanized or fully human immunoglobulin G1 (IgG1). These antibodies bind with high affinity to the target antigen and are efficient in activating the immune system via IgG Fc receptors and/or complement. In addition to IgG1, three more isotypes are present in humans, of which IgG3 has been found ...
متن کاملEngineering neonatal Fc receptor-mediated recycling and transcytosis in recombinant proteins by short terminal peptide extensions.
The importance of therapeutic recombinant proteins in medicine has led to a variety of tactics to increase their circulation time or to enable routes of administration other than injection. One clinically successful tactic to improve both protein circulation and delivery is to fuse the Fc domain of IgG to therapeutic proteins so that the resulting fusion proteins interact with the human neonata...
متن کاملImportance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR.
The neonatal FcR (FcRn) binds to the Fc domain of IgG at acidic pH in the endosome and protects IgG from degradation, thereby contributing to the long serum half-life of IgG. To date, more than 20 mAb products and 5 Fc-fusion protein products have received marketing authorization approval in the United States, the European Union, or Japan. Many of these therapeutic proteins have the Fc domain o...
متن کاملIgG Subclasses and Allotypes: From Structure to Effector Functions
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector f...
متن کاملA novel in vitro assay to predict neonatal Fc receptor-mediated human IgG half-life
Immunoglobulin G (IgG) has an unusually long serum half-life in comparison to proteins of a similar size. It is well-known that this phenomenon is due to IgG's ability to bind the neonatal Fc receptor (FcRn) in a pH-dependent manner. FcRn binding properties can vary among IgGs, resulting in altered in vivo half-lives, and therefore it would be beneficial to accurately predict the FcRn binding p...
متن کامل